SUPRAMOLECULAR ARCHITECTURES ON BULK INSULATORS BY NON-CONTACT ATOMIC FORCE MICROSCOPY AT ROOM TEMPERATURE: INVESTIGATION DOWN TO THE SINGLE MOLECULE SCALE

Laurent Nony

Journées thématique « Molécules organiques et UHV », 12-13th of October 2015

Aix-Marseille Université, Faculté des Sciences, site Etoile - Saint-Jérôme IM2NP, UMR CNRS 7334

laurent.nony@im2np.fr

The « Nanostructuration » group at the IM2NP

Building molecular assemblies from supramolecular chemistry concepts

The « non-contact AFM » thematic within the group

Relevant heteroepitaxial systems:

- Influence of peripheral groups
- Symetry
- Epitaxy (?)

Growth fundamental processes (MM vs. MS interactions)

Diboronic acid on KCI(001)

2D self-assembly of molecular films on insulating substrates (alkali halides ionic crystals)

Hexahydroxytriphenylene on KCI(001)

F.Bocquet et al., Phys.Rev.Lett. (2012)

Optical & electronic properties in relation to structural properties

Insulating substrates:
 mandatory for an efficient electronic

decoupling (intrinsic properties)
appropriate for transport properties

"CDB" on KCI(001)

Institut Matériaux Microélectronique Nanosciences de Provence UMR CNRS 7334, Universités Aix-Marseille et Sud Toulon-Var

5 nm

Aix*Marseille université

The « non-contact AFM » thematic within the group

Ch. Loppacher (Pr.), F. Bocquet (MC), L.Nony (MC), F. Para (IE), A. Amrous (PhD)

References:

- P.Milde et al., Nanotechnology **19**, 305501 (2008)
- F.Bocquet *et al.*, Phys. Rev. B **78**, 035410 (2008)
- L.Nony et al., Nanotechnology 20, 264014 (2009)
- L.Nony et al., Phys. Rev. Lett. 103, 036802 (2009)
- R.Pawlak et al., J.Phys.Chem C 114, 9290 (2010)
- F.Bocquet et al., Phys. Rev. B 83, 035401 (2011)
- F.Bocquet et al., Phys.Rev.Lett. 108, 206103 (2012)
- L.Nony et al., Beilstein J. Nanotechnol. 3, 301 (2012)
- A.Amrous *et al.*, Adv.Mat.Interf. **1**, 1400414 (2014)
- L.Nony, HDR (2013), downloadable from HAL CNS.

UHV setup (2008)

Aix*Marseille

Our AFM microscope

Nanosensors PPP-NCI: 120°C / 1h

Parameters: $f_0 = 150 \text{ kHz},$ $A_0 = 1-5 \text{ nm}$ Q = 40'000k = 40 N/m

- 0.5-1 ML (taux -substrate @ RT Samples:

- Ex situ cleavage
- Annealing 240°C/ 2h

Institut Matériaux Microélectronique Nanosciences de Provence

(Aix*Marseille

Non-contact Atomic Force Microscopy (nc-AFM)

Aix*Marseille université

Illustration

✓ RbCl(001) (drift-corrected, raw data): $A_0 = 5.6$ nm, $\Delta f = -21.5$ Hz

Institut Matériaux Microélectronique Nanosciences de Provence

Alkali halides substrates

[1] R.E.Watson et al., Phys. Rev. B (1981); F.Bocquet et al., Phys. Rev. B (2008)

Institut Matériaux Microélectronique Nanosciences de Provence UMR CNRS 7334, Universités Aix-Marseille et Sud Toulon-Var

(Aix*Marseille université

1,4-Benzene DiBoronic Acid (BDBA)

- ✓ Molecular crystal = stack of 2D sheets (vdW interactions, similar to graphite)
- On metallic substrates, the molecule promotes the formation of covalent organic frameworks (COF)

¹R.Pawlak et al., J.Phys.Chem.C **114**, 9290 (2010)

10

BDBA on KCI(001)¹

С

Exp. conditions: a&b- (30x30)nm², y=-0,085 nN.√nm c- (9x9)nm², y=-0,13 nN.√nm

- Structural data inconsistent with polymerized resulting structures: H-bonded supramolecular phase
- ✓ Monoclinic u.c.: a = (5.2±0.2) Å, b = (10.0±0.2) Å
- ✓ Peculiar epitaxy: $\alpha = (27\pm2)^\circ$ between <10>_m et <10>_s

¹R.Pawlak et al., J.Phys.Chem.C **114**, 9290 (2010)

Institut Matériaux Microélectronique Nanosciences de Provence UMR CNRS 7334, Universités Aix-Marseille et Sud Toulon-Var

11

BDBA on KCI(001)¹: DFT approach

✓ **DFT-calculated free standing film:**

- ✓ Monoclinic u.c.: a₀=4.998 Å b₀=10.178 Å
- ✓ Compliant with the exp. data
- ✓ H-bonds driven supramolecular phase
- ✓ Cohesion: 0.95 eV/mol.
 - Conformationnal change required to reduce sterical hindrance
- ✓ 2D structure nearly similar to a sheet of the molecular crystal
- ✓ But: susbtrate influence (27° angle): trace of a line on line epitaxy which is electrostatically driven

Institut Matériaux Microélectronique Nanosciences de Provence UMR CNRS 7334, Universités Aix-Marseille et Sud Toulon-Var

Aix*Marseille université

 \checkmark

Other examples of extended networks

Nitro-diboronic acid on KCI(001)

"DOSPS" on KCI(001)

"CDB" on KCI(001)

Institut Matériaux Microélectronique Nanosciences de Provence UMR CNRS 7334, Universités Aix-Marseille et Sud Toulon-Var

Other alkali halides substrates

Institut Matériaux Microélectronique Nanosciences de Provence UMR CNRS 7334, Universités Aix-Marseille et Sud Toulon-Var

(Aix*Marseille

14

Conclusions / Outlook

✓ Nc-AFM in UHV: sensitive and non-destructive method for the investigation of organic phases on bulk insulators

✓ Supramolecular networks on alkali halides:

- Complex, but original systems:
 - Polymerization process \neq metals
 - H-bonds driven supramolecular phases
 - Conformationnal adaptation \bullet
 - Peculiar epitaxies
- Fine energy MM vs. MS balance (~350 vs. ~250 meV/mol.)
- Connexion between experiments and calculations (DFT, PG)
- \checkmark Several substrates for a single molecular synthon: site specific interaction

✓ Outlook:

- \rightarrow **Optical properties**: Differential Reflectance Spectroscopy (absorption)
- → *Entropic contribution* (DFT vs. MD)

