Déposition de molécules organiques par électrospray

Hinaut Antoine, Rémy Pawlak, Thilo Glatzel et Ernst Meyer

Department of Physics, University of Basel, CH-4056 Basel

https://nanolino.unibas.ch

Introduction

Introduction

J.B Fenn et al. (1989), Science 246

ElectroSpray Ionisation (ESI)

→ Technique non destructive pour l'introduction sous UHV.
→ Orienté vers un échantillon pour le dépôt de molécules.

Molecularspray

ncAFM room temperature, home built

Dispositif : MolecularSpray

C₆₀/Cu(111) Spray deposition = 3min. Dichloromethane et Acetonytrile (4:1).

Porphyrin chain/Au(111), chauffage 100°C.

A. Saywell et al., Angewandte chemie, 49 (2010)

M.B. Wieland et al., Chem. Commun., 50 (2014)

ESD avec sélection :

N3 Dye/TiO₂ anatase

Kley C. S. et al., Nano Letters 14 (2014) Groupe Klaus Kern

Glycosylated hexayne/Au(111)

Rinke G. et al., International Journal of Mass Spectrometry (2015) Groupe Richard Berndt

Molécules et surface

Double porphyrine

Synthèse par F. Diederich, ETH Zurich. 2 groupes CN : ancrage sur la surface *B. Such et al. (2010), ACS Nano 4.*

A. Hinaut et al. (2012), Beilstein J Nanotechnol 3.

Solvants type chromasolv Toluène et isopropanol (2:1)

Molécules et surface

Double porphyrine

Synthèse par F. Diederich, ETH Zurich. 2 groupes CN : ancrage sur la surface *B. Such et al. (2010), ACS Nano 4. A. Hinaut et al. (2012), Beilstein J Nanotechnol 3.*

Solvants type chromasolv Toluène et isopropanol (2:1)

KBr(001)

Clivage air ou UHV. \rightarrow Chauffage 1h @ 150°C. $\rightarrow -1V < Bias < 1V$

ESI : Solvant seul

 $A_{1st} = 5 nm, \Delta f_{1st} = -10Hz$

ESI : Toluène et isopropanol (2:1) pendant 30 min1kV < U < 2,5kV

ESI : Double porphyrine

ESI : Double porphyrines dans toluène et isopropanol (2:1) pendant 5 min

 $A_{1st}=2nm, \Delta f_{1st}=-15Hz$

U< -30*V* (-10*V* appliqués).

Cristaux ioniques et charges

ESD sur isolant bulk :

Répulsion électrostatique \rightarrow taux de couverture limité.

→ Chauffage de l'échantillon Double porphyrine/KBr(001) 1h @ 350K

Double porphyrine : Recuit

Chauffage échantillon : 1h @ 350K.

 $A_{1st} = 4 \text{ nm}, \Delta f_{1st} = -10 \text{ Hz}$ U = -1V

- 1 : bord de marche avec molécules adsorbées.
- 2 : bord de marche seul.
- 3 : petits agrégats.
- **4** : llots.

Double porphyrine : Recuit

Double porphyrine : Recuit

T. Glatzel et al. (2009), Applied Physics Letters 94. A. Hinaut et al. (2012), Beilstein J Nanotechnol 3.

Double Porphyrine : Molécules uniques

Modification du dispositif MolecularSpray.

Ajout d'un nouvel étage

de pompage différentiel.

Double porphyrine / KBr(001) Toluène et isopropanol (2:1) U<1,5kV 5 min

 $f_2=1017kHz, A_2=400pm, \Delta f_2=-10Hz.$

Double Porphyrine : Molécules uniques

 $f_{2nd} = 1.02 \text{ MHz}, A_{2nd} = 400 \text{ pm}, \Delta f_{2nd} = -70 \text{ Hz}$

dichloromethane et methanol (1:1)

U < 1,5kV

U ≥ 3kV

Toluene: isopropanol (2:1).

ESD of NanoDiamond

Nanodiamants synthetisés à l'institut de saint louis. 2 solutions acqueuses: 2-5nm et 50nm de diamètre.

Conclusion

- Dépôt de molécules sur isolants massifs possible par ESI.
- Différents taux de couverture possible.
- → molécules isolées.

ESI : TTF-Dye TiO₂ rutile ou anatase

*Cu-porphyrin/TiO*₂ *rutile (110)* R. Jöhr et al. *The Journal of Chemical Physics*, 143, 9 (2015)

Acknowledgements

Vielen Dank für Ihre Aufmerksamkeit !!

U N I B A S E L

Dispositif et caractérisation

UHV home built RT AFM

Cantilever Si : PPP-NCL, chauffage 1h @ 100°C, Sputtering 2min.

$f_{1st}=150kHz$	$f_{2nd}=1MHz$	$f_{TR}=1.5MHz$
Q _{1st} =30000	$Q_{2nd} = 10000$	$Q_{TR} = 100000$
k _{2nd} >> k _{1st} S. Kawai, et al., APL 86 193107 (2005)		